博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
[LeetCode] Divide Two Integers
阅读量:6267 次
发布时间:2019-06-22

本文共 2397 字,大约阅读时间需要 7 分钟。

In this problem, we are asked to divide two integers. However, we are not allowed to use division, multiplication and mod operations. So, what else can we use? Yeah, bit manipulations.

Let's do an example and see how bit manipulations work.

Suppose we want to divide 15 by 3, so 15 is dividend and 3 is divisor. Well, division simply requires us to find how many times we can subtract the divisor from the the dividend without making the dividend negative.

Let's get started. We subtract 3 from 15 and we get 12, which is positive. Let's try to subtract more. Well, we shift 3 to the left by 1 bit and we get 6. Subtracting 6 from 15 still gives a positive result. Well, we shift again and get 12. We subtract 12 from 15 and it is still positive. We shift again, obtaining 24 and we know we can at most subtract 12. Well, since 12 is obtained by shifting 3 to left twice, we know it is 4 times of 3. How do we obtain this 4? Well, we start from 1 and shift it to left twice at the same time. We add 4 to an answer (initialized to be0). In fact, the above process is like 15 = 3 * 4 + 3. We now get part of the quotient (4), with a remainder 3.

Then we repeat the above process again. We subtract divisor = 3 from the remaining dividend = 3 and obtain 0. We know we are done. No shift happens, so we simply add 1 << 0 to the answer.

Now we have the full algorithm to perform division.

According to the problem statement, we need to handle some exceptions, such as overflow.

Well, two cases may cause overflow:

  1. divisor = 0;
  2. dividend = INT_MIN and divisor = -1 (because abs(INT_MIN) = INT_MAX + 1).

Of course, we also need to take the sign into considerations, which is relatively easy.

Putting all these together, we have the following code.

1 class Solution { 2 public: 3     int divide(int dividend, int divisor) { 4         if (!divisor || (dividend == INT_MIN && divisor == -1)) 5             return INT_MAX; 6         int sign = ((dividend < 0) ^ (divisor < 0)) ? -1 : 1; 7         long long dvd = labs(dividend); 8         long long dvs = labs(divisor); 9         int res = 0;10         while (dvd >= dvs) { 11             long long temp = dvs, multiple = 1;12             while (dvd >= (temp << 1)) {13                 temp <<= 1;14                 multiple <<= 1;15             }16             dvd -= temp;17             res += multiple;18         }19         return res * sign;20     }21 };

 

转载地址:http://vocpa.baihongyu.com/

你可能感兴趣的文章
装饰器的邪门歪道
查看>>
Dubbo常用配置解析
查看>>
【转】C#解析Json Newtonsoft.Json
查看>>
macports的安装及常用命令
查看>>
(转)使用C#开发ActiveX控件
查看>>
spring mvc 基于注解 配置默认 handlermapping
查看>>
半小时学会上传本地项目到github
查看>>
Android学Jni/Ndk 开发记录(一)
查看>>
Linux Tcl和Expect的安装
查看>>
WPF中的依赖项属性(转)
查看>>
linux防火墙相关 iptables
查看>>
最简单的单例模式
查看>>
JPopupMenu的使用以及JPopupMenu中子组件的事件处理
查看>>
从反汇编的角度看引用和指针的区别
查看>>
拓马长枪定乾坤
查看>>
UIProgressView的详细使用
查看>>
Silverlight实用窍门系列:70.Silverlight的视觉状态组VisualStateGroup
查看>>
照片筛选与上传功能
查看>>
Hello ZED
查看>>
常见web攻击方式
查看>>